

Upstream Economics

Seminar: Introduction to Upstream Oil and Gas for the Net Zero World

Natan Battisti Planning and Economics Adviser -Harbour Energy 30 November 2023

- Introduction
- Key Petroleum Economics Concepts
- E&P project inputs:
 - Technical
 - Contract specific
 - Macroeconomics
- E&P project outputs:
 - Key economic metrics
 - Sensitivity analysis
- Decision making
- Q&A

Introduction: Who am I

- Born in Brazil, grew up in a farm, Italian citizenship by heritage, proud gaucho!
- A Petroleum Engineer passionate about energy, economy, and politics
- Since 2018 with Harbour Energy
- Lived in 3 countries, worked with 7 countries
- Planning and Economics Adviser since 2022
- STEM Ambassador London Chapter Chair at Harbour
- 10-year member of SPE Intl.
- London SPE Sponsorship Chair 2023/2024
- 2024 2026 nominated SPE Intl. Young Professional Committee
- Até o Último Barril co-founder
- Experience

Key concepts: Why do we run economics

Premises

- You are a C-level executive at an Exploration and Production (E&P) company
- You must choose one project to go ahead
- What an E&P need to produce/generate?

Key concepts: Why do we run economics

	1st HC (year)	Sunk costs (\$m)	Resource in place (mmboe)	Recovery factor (%)	Devex (\$m)	Fiscal regime	
Project A (Onshore)	2026	\$15m	250	20%	100	Royalty	
Project B (Offshore)	2024	\$50m	200	30%	250	PSC 20y	

Harbour Energy | SPE London - Co \$m + Millions of US dollars / mmboe = Millions of barrels of oil equivalent / PSC = Production Sharing Contract

Key concepts: E&P project life-cycle

Value Identification

Value Realisation

Key concepts: E&P project life-cycle

Harbour Energy | SPE London - Copyrights 2023 Harbour Energy. All rights reserved.

Key concepts: Business risks

Technical - underground

	Reservoir heterogeneity Gas oil ratio				
	Reservoir connectivity Water-oil contact				
	Well integrity Multiphase well flow				
	Oil quality Acquifer				
Technical – above ground					
	Process safety Spills				
	Environment Occupational health/safety				
	Multiphase flow EPCI				
	Operations Simulataneous operations				

Non-technical

Key concepts: Types of E&P contracts

- E&P contracts have changed and grown in complexity.
- There are three main family types of contracts globally.
- Each contract has its pros and cons

	Royalty / Concession Regime	Production Sharing Agreements/Contracts (PSA/PSC)	Service Agreements Risk Contracts
Risks	Contractor	Shared	State
Ownership	Contractor	State	State
Countries	UK, NO, US, CA, BR	BR, AO, MX	VN, IR, IQ, EC, MX
From a Contractor point of view			
Royalties	Likely (UK/NO exceptions)	Unlikely	-
Тах	Yes	Yes	Yes
Bonus	No (BR as one exception)	Yes	No
Firm commitment	Yes	Yes	
Share of production	All production	Part of production	No

Key concepts: Government Take by country/regime

Average government take and implied breakeven price for the case example under different fiscal regimes

Chart source: Rystad Fiscal Regime Report 2023

E&P project: Technical Inputs

subsea7

CATCHER GAS

MMbl

E&P project: Macroeconomic Inputs

Note: Confidence interval derived from options market information for the five trading days ending Feb 3, 2022. Intervals not calculated for months with sparse trading in near-the-money options contracts. Source: U.S. Energy Information Administration, Short-Term Energy Outlook, Feb 2022,

E&P project: Modelling

London Section

E&P project: Outputs

That is why fixed rate savings offer you interest in your money when you invest

- A Dollar or any unit of currency is worth more today than it is tomorrow.
 This is known as the **Time Value of Money.**
- Value of money is depreciated by inflation.

Discount rate (i)

Weighted Average Cost of Capital (WACC) =

(Cost of Equity * % Equity) + (Cost of Debt * % Debt)

- Vary from company to company.
- Represents the risk of a business.
- Midstream & renewables: lower cost of capital
- Generally
 - the bigger the company, the lower the WACC
 - the better the financials of a company, the lower the WACC
 - Often assumed as 10%, but commonly vary from 8% - 15%
- Cost of equity is higher than cost of debt

Net Present Value (NPV)

- NPV also known as Discounted Cash Flow (DCF) is a scenario!
- Inside the discount factor formula there is a discount rate
- Discount rate adjusts time value of money and systematic risk
- Net Present Value = Future Value (FV) / Discount Factor
- NPV depends on the schedule (more to follow)

Year 3 Year 4

Net Present Value explained

Discount rate@10%								
Year (t)	2021	2022	2023	2024	2025	2026	2027	Total
Cashflow	-250	50	100	100	70	60	50	180
Discount Factor	1.000	1.100	1.210	1.331	1.464	1.611	1.772	
PV NCF t=0	-250	1					I	
PV NCF t=1	45.5 <	i					 	
PV NCF t=2	82.6 ≺ -		i				 	
PV NCF t=3	75.1 < -			i			 	
PV NCF t=4	47.8 ◄…				<i>:</i>		 	
PV NCF t=5	37.3 ≺ -					:	 	
PV NCF t=6	28.2 < -							
Total NPV	<mark>66.5</mark>							

Project IRR vs Corporate Hurdle Rate

- Each company, depending the strategy, will have a different target IRR,
- It is called Corporate Hurdle Rate.
- Sometimes, depending on other project characteristics such as location, financing, etc a project might

Payback

- Amount of time it takes for a project to pay itself.
- Simple Investment Recovery Metric.
- Liquidity and Risk Assessment.
- Decision-Making Simplicity.
- Can be calculated on a discounted or undiscounted basis.

Breakeven

- What commodity price returns NPV = \$0m
- Can be analysed for oil, gas or both together. Depends the project.
- Important to understand whether a project is resilient to low price scenarios.

Expected Monetary Value (EMV)

- EMV is a <u>risk-weighted present value</u> considering the present cost of failure associated with the project.
- Use NPVs from different scenarios (failure, and successes).
- Typical for Exploration and Appraisal projects where the uncertainty is high.

Sensitivity analysis

- Usually, sensitivities are run for the NPV, but it can be done for other metrics as well.
- Variables used for sensitivity change based on project specifics and fiscal regimes.
- Stress test the parameters.

Decision making under uncertainty

Different perspectives

BAOJUN BAI AND ZHANGNING CHEN

Source: Processes 2020, 8(5), 576; https://doi.org/10.3390/pr8050576

Source: https://www.renovainc.com/en/business/geothermal/

Magma pool

Recap

NPV / EMV

- IRR
- PIR
- Payback
- Breakeven

Financial Metrics

Economic Metrics

- Earnings Before Interest and Taxes (EBIT)
- Earnings per share (\$/share)
- Return On Capital Employed (%)
- Weighted Average Cost of Capital (%)
- Revenue/Profit/Cashflow per boe (\$/boe)

Technical Metrics

- Reserve Life (years)
- Reserves Replacement Ratio (%)
- Unit Finding Cost (\$/boe)
- Unit Development Cost (\$/boe)
- Lifting Cost (\$/boe)
- Unit Technical Cost (\$/boe)
- Commercial Success Ratio (%)
- Technical Success Ratio (%)

Each metric tells a different story and serves for different purpose. Evaluate a set of them together. Know their pros and cons. Different investors weight them differently.

> For alternative energy sources and CCUS, economics are modelled very differently

Contact details

Natan Battisti Natan.battisti@harbourenergy.com (0) 7395 286 264 Head Office | 23 Lower Belgrave Street | London | SW1W ONR

