
SPE – Geochemistry Overview

June 2023

OPC UK LTD | 1-2 Apollo Studios, Charlton Kings Rd, London NW5 2SB | +44 (0)207 4281111 | london@opc.co.uk | www.opc.co.uk

Oilfield Production Consultants (OPC)

- OPC are a globally renowned leader in the provision of subsurface engineering, geosciences and production engineering consultancy services to the E&P industry
- World class expertise in Well Testing, Pressure Transient Analysis, Reservoir Modelling, Integrated Upstream Projects (FDP), Competent Person Reporting (certified by LSE)
- OPC has three provisions:
 - Technical projects and studies
 - Consultant services
 - Software and technical training

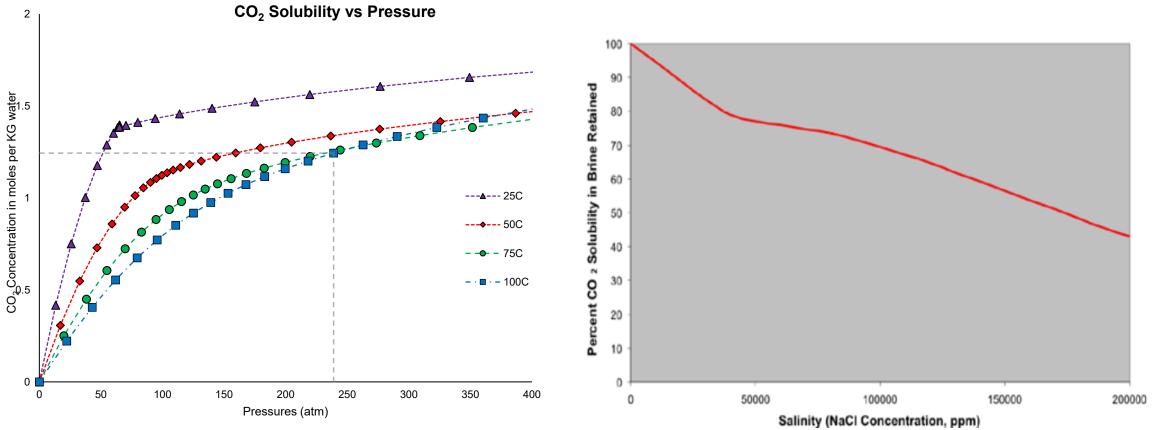
Offices

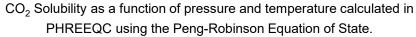
Who am I?

- Background in geoscience
- Masters @ UCL in fluid-rock-CO₂ interactions
- Published author on the subject
- Working in industry for 2 years
 - >10 CO_2 storage projects with OPC

Not Indiana jones

Deccan traps scouting for basalts





Expected Subsurface CO₂ Reactions

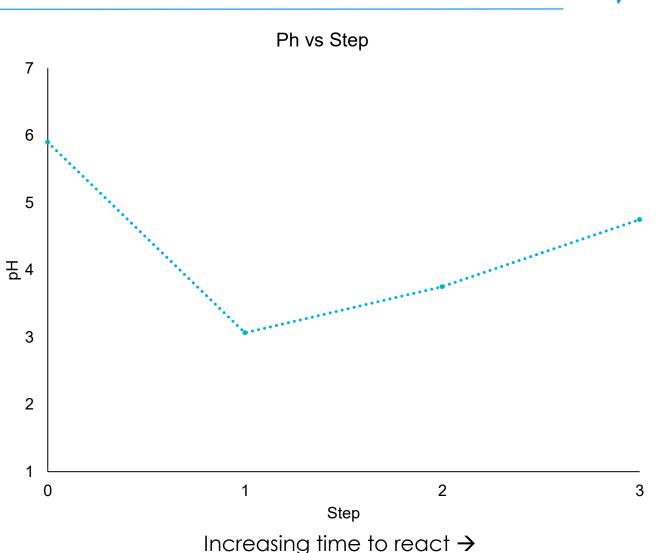
CO₂ + Water



As CO₂ mixes with H₂O it forms carbonic acid which is acidic (~pH 3). $CO_2 + H_2O(aq) = H_2CO_3(aq) + H^+$

CO₂ + Water + Rocks

- Formation of carbonic acid (H₂CO₃(aq) + H⁺) increases the pH of fluid ~ pH3
- May lead to the dissolution of mineral assemblages and precipitation of others dependent on T/P
- Most minerals/rocks show little reactivity in the short term
 - Certain minerals (calcite) will dissolve readily in the presence of carbonic acid at T> 30°C and release Ca²⁺


 $H_2CO_3(aq) + H^+ + CaCO_3 = dissolution$

Rate and extend of the dissolution dependent on the amount of rocks that will buffer the system

Example Step Reactions

- Injected CO₂ dissolves in 'stuck' indigenous fluids (pH 5-7) forming carbonic acid (pH 3) depending on T/P & salinity
- 2. Certain minerals if they exist readily dissolve in the CO_2 charged water increasing the pH of the fluid (pH4-6).
 - I. Includes the dissolution of silicates (usually slow)
- 3. Formation of new minerals removes CO₂ from fluid which results in pH increasing

Modelling

- Main technique is equilibrium / batch modelling using PHREEQC 3.0 + specialised database
- Inputs:
 - Indigenous fluid chemistry
 - Pressure & temperature at xyz (taken from sim. model)
 - pCO_2 (+ impurities taken from sim. model)
 - Minerology

• Outputs:

• Expected equilibrated water chemistry (S.I of mineral assemblages i.e what dissolves/precipitates)

Driver of software far more important than the tool itself

Examples

1.785e-04	1.785e-04
1.427e+00	1.427e+00
7.638e-02	7.638e-02
2.772e+00	2.772e+00
8.336e-07	8.336e-07
7.318e-03	7.319e-03
4.789e-02	4.789e-02
2.518e+00	2.518e+00
1.751e-04	1.751e-04

A1

С Ca Cl Fe K

C(4)

CO2

1.427e+00

1.423e+00 2.438e+00

Table 10:	WJU03 Sa	aturation Indie	ces						Mg 4.789e-02 4.789e-02 Na 2.518e+00 2.518e+00
Hours.	рН	Calcite	Boehmite	Chalcedony	Magnesite	Dolomite	Goethite	Ankerite	
1	4.69	-7.1078	0.6352	-0.8308	-8.6273	-14.7783	-1.0134	-12.4995	Description of solution
5	5.58	-5.3556	2.1581	-0.83	-6.8704	-11.2692	1.659	-8.965	
24	5.58	-5.2971	2.266	-0.6904	-6.808	-11.1483	1.7954	-8.77	pH = 3.133 Charge balance
144	7.44	-1.4657	2.4731	-0.4287	-2.9704	-3.4793	6.3656	-2.2284	pe = 0.028 Adjusted to redox equ
192	7.6	-1.1655	1.7852	-0.5005	-2.6914	-2.9001	6.3202	-2.1336	Density $(g/cm^3) = 1.10765$ Volume (L) = 1.10464
528	7.71	-0.9188	2.3503	-0.4071	-2.4369	-2.3989	6.4229	-1.8943	Activity of water = 0.891
720	7.97	-0.3823	2.1314	-0.2954	-1.8627	-1.2882	6.5445	-1.4962	Ionic strength = 2.459e+00
1440	8.2	0.1001	1.9368	-0.2513	-1.2975	-0.2405	6.5898	-1.1984	Mass of water $(kg) = 1.000e+00$
2160	8.4	0.4966	1.7698	-0.2227	-0.8573	0.5961	6.6156	-0.976	Total alkalinity (eq/kg) = 2.544e-03
Moles Prec		1.616e-05	1.811e-06			0	3.606e-06		
PCO ₂ Appl									Electrical balance (eq) = 4.092e-12
3 bars	8.4	1.8506	1.9271	-0.2207	0.6788	3.4862	6.7047	4.4229	Percent error, 100*(Cat- An)/(Cat+ An) = 0.00
10 bars	8.4	1.9076	2.265	-0.2157	0.7755	3.6399	6.7953	5.1553	Iterations = 25
30 bars	8.4	1.9477	2.6252	-0.2129	0.8508	3.7553	6.8937	5.8112	Total H = 1.110593e+02
Moles Prec	_	1.608e-04	1.818e-06	0.212/	0	2.215e-05	3.604e-06	2.641e-09	Total O = 5.838374e+01

Table 11: WJS2C Saturation Indices

Hours.	pН	Calcite	Boehmite	Chalcedony	Magnesite	Dolomite	Goethite	Ankerite
1	4.5	-7.5259	0.1001	-0.8828	-8.7064	-15.2755	-1.4473	-13.1615
5	5.5	-5.5105	2.0683	-0.8017	-6.6942	-13.2733	1.6334	-9.0654
24	6.39	-3.7307	2.6099	-0.8017	-4.9144	-7.6883	4.4354	-5.3736
144	6.88	-2.7047	2.6699	-0.5629	-3.9013	-5.6491	5.8492	-3.4238
192	7.21	-1.9991	2.4744	-0.3939	-3.2121	-4.2544	6.4873	-2.4101
528	7.42	-1.5182	2.1697	-0.2031	-2.7713	-3.3327	6.7745	-1.8519
720	7.63	-1.0331	1.9752	-0.0412	-2.2478	-2.3241	6.9707	-1.3807
1440	7.78	-0.6972	2.2218	0.076	-1.8828	-1.6231	7.0982	-1.0673
2160	7.91	-0.4047	2.1126	0.1676	-1.5919	-1.0398	7.1945	-0.8085
Moles Precipitated		1.313e-06	2.069e-05			1.337e-05		
PCO ₂ Appl	ied							
3 bars	7.91	1.5844	2.0559	0.1666	0.464	3.0053	7.2196	5.1129
10 bars	7.91	1.6652	2.2559	0.1681	0.5596	3.1816	7.2755	5.8074
30 bars	7.91	1.7513	2.5244	0.1696	0.6718	3.3799	7.349	6.4621
Moles Prec	cipitated	1.709e-04	1.322e-06	2.101e-05	0	3.760e-05	1.316e-05	2.417e-07

				Log	Log	Log	mole V	
	Species	Molality	Activity	Molality	Activity	Gamma	cm³/mol	
		0.10104	B 066- 04			0.043		
	H+	8.101e-04	7.366e-04				0.00	
	OH-	1.784e-11	1.165e-11	-10.749	-10.934	-0.185	0.02	
	H2O	5.553e+01	8.906e-01	1.744	-0.050	0.000	18.07	
A1		1.785e-04						
	A1+3	1.773e-04	1.175e-05	-3.751	-4.930	-1.179	-39.22	
	Al(OH)+2	1.167e-06	1.591e-07	-5.933	-6.798	-0.865	-26.31	
	A1H3SiO4+2	6.768e-08	9.229e-09	-7.170	-8.035	-0.865	-7.81	
	Al (OH) 2+	6.472e-10	4.467e-10	-9.189	-9.350	-0.161	2.03	
	Al (OH) 3	7.860e-13	7.860e-13	-12.105	-12.105	0.000	13.00	
	Al (OH) 4-	4.717e-16	3.255e-16	-15.326	-15.487	-0.161	11.39	
	NaAl (OH) 4	4.673e-16	4.673e-16	-15.330	-15.330	0.000	53.59	
	Al (CH3COO)	2+ 9.824e-19	6.780e-19	-18.008	-18.169	-0.161	50.82	
C(-2)		8.152e-22						
	C2H4	4.076e-22	4.076e-22	-21.390	-21.390	0.000	45.52	
C (-3)	1.125e-09						
	C2H6	5.626e-10	5.626e-10	-9.250	-9.250	0.000	51.20	
C (-4)	5.424e-04						
	CH4	5.424e-04	5.424e-04	-3.266	-3.266	0.000	37.32	
C ()	2)	1.186e-11						
	CO	1.186e-11	1.186e-11	-10.926	-10.926	0.000	33.62	

0.153

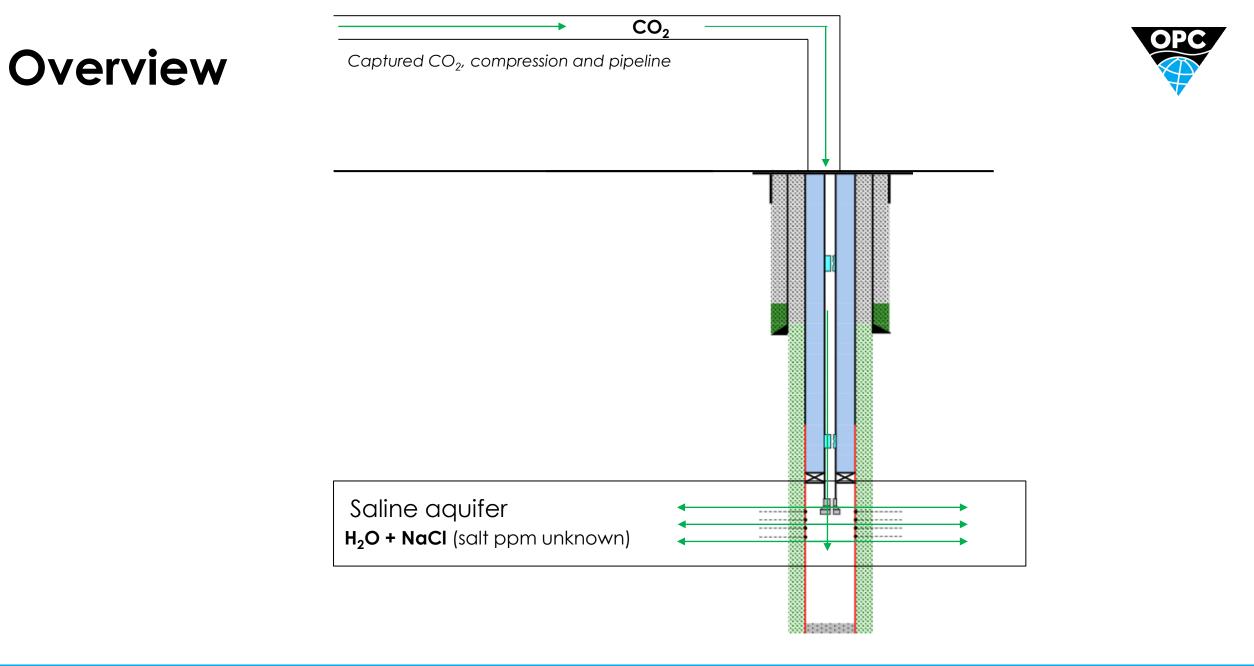
-----Distribution of species-----

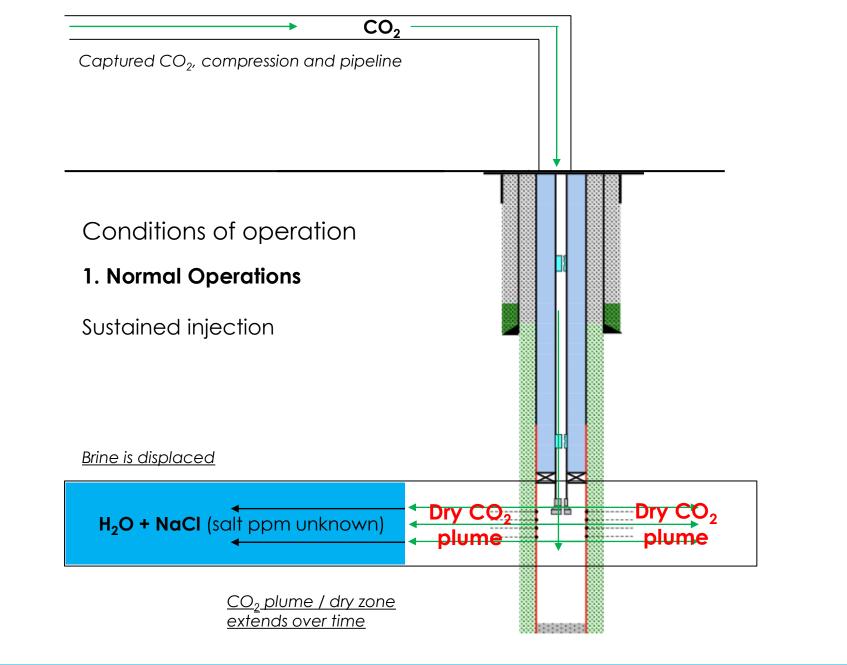
Adjusted to redox equili

0.234

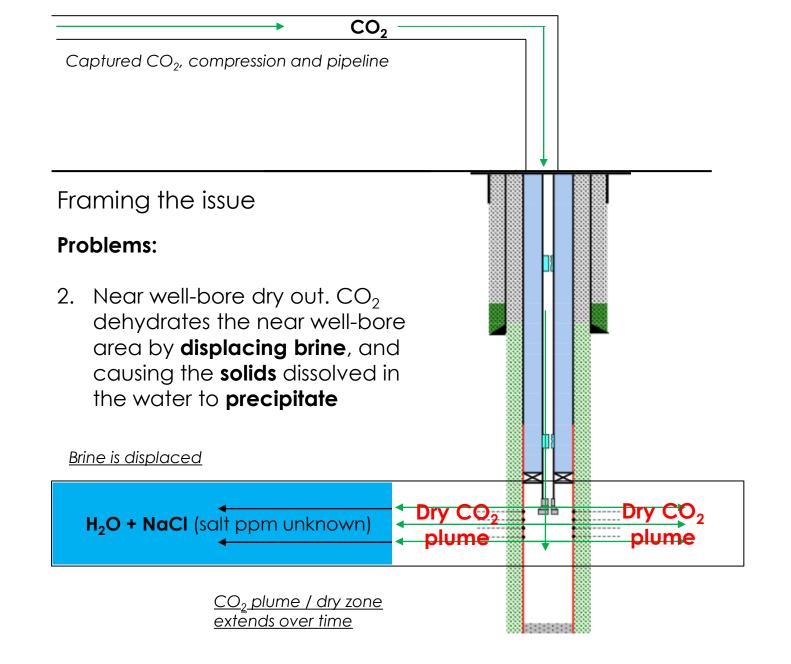
33.24

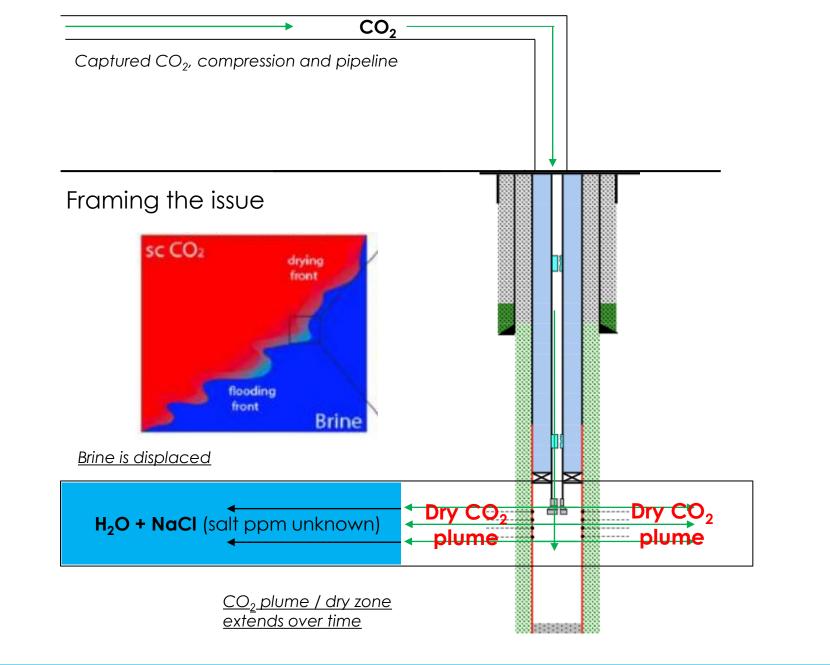
0.387

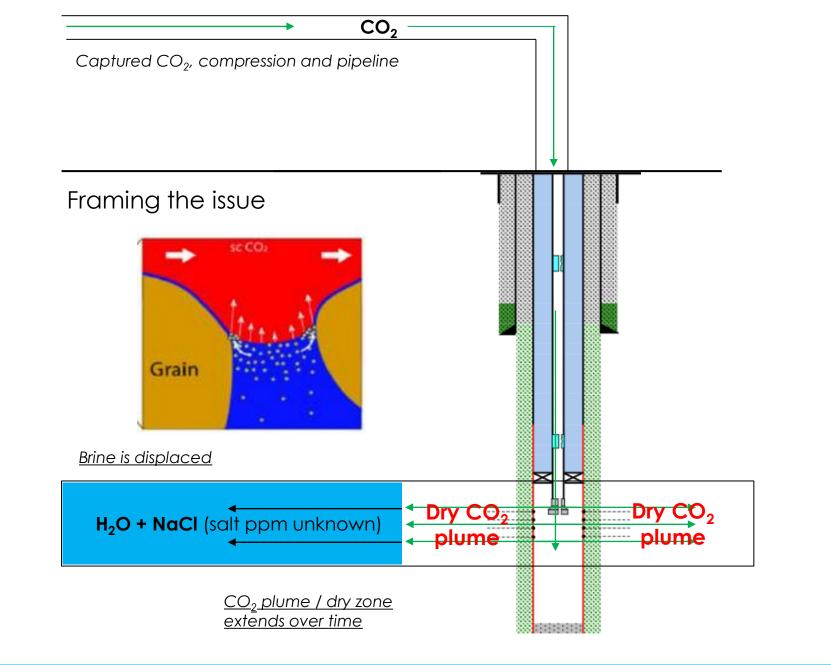

Implications

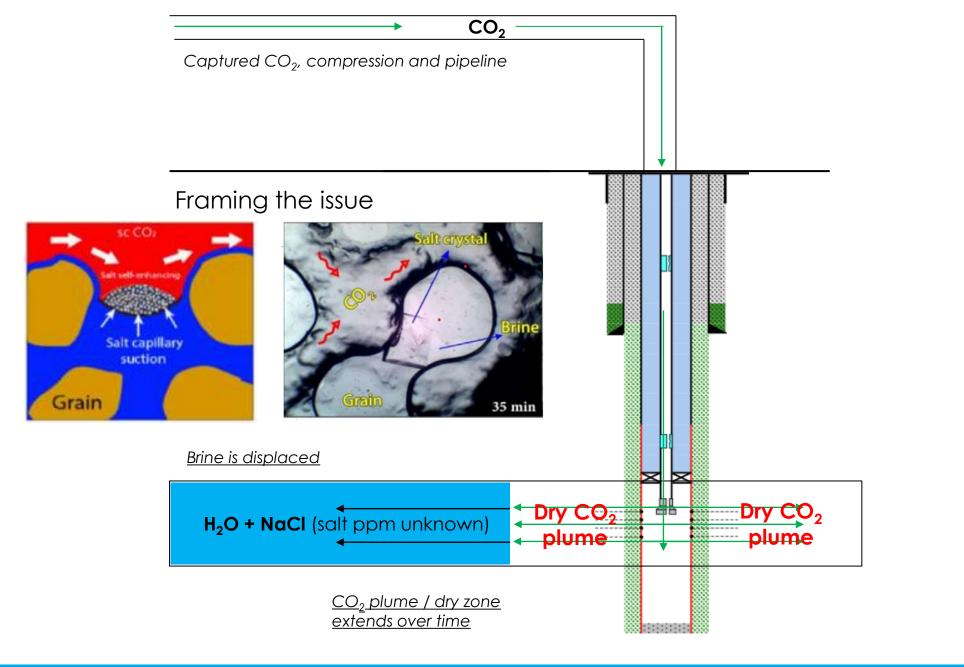


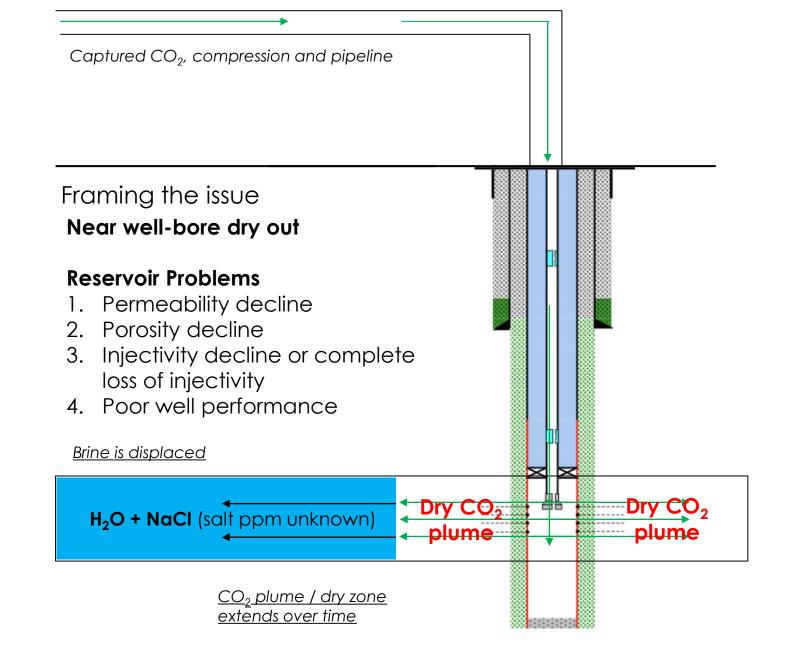
- If rock does not buffer CO₂ charged fluid (pH 3) implications for well/cement design (even far away from injector – connate water saturation)
- Injection of CO_2 into fresh/low salinity fluids = increase storage capacity through solubility trapping
 - Although is dependent on surface area
- All systems are rock 'dominated' & buffered
 - Interesting in the case of chalk/carbonate reservoirs

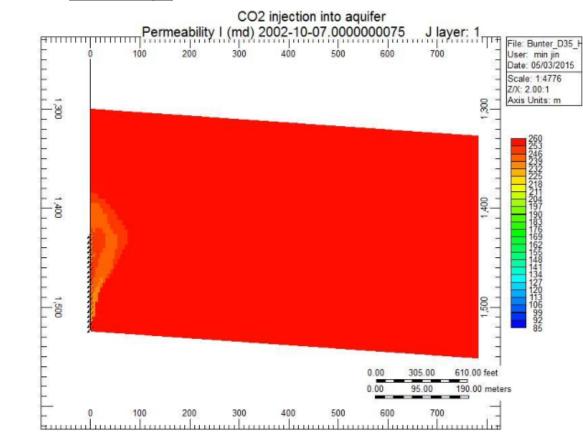



Near well-bore dry out



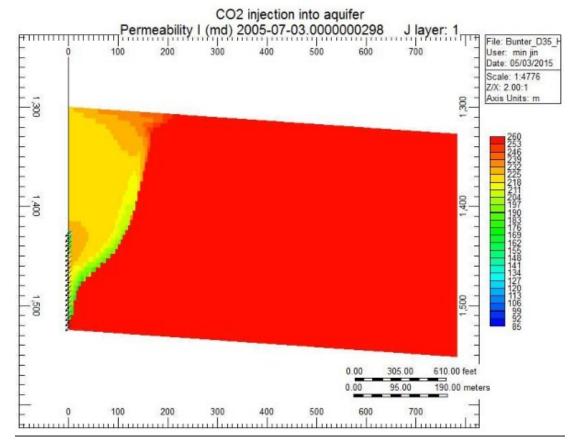




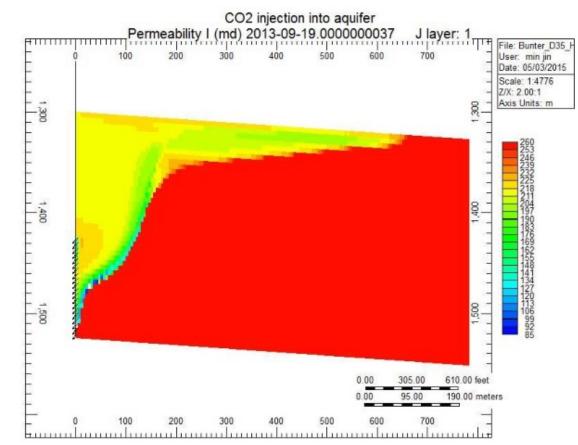


Permeability Decline

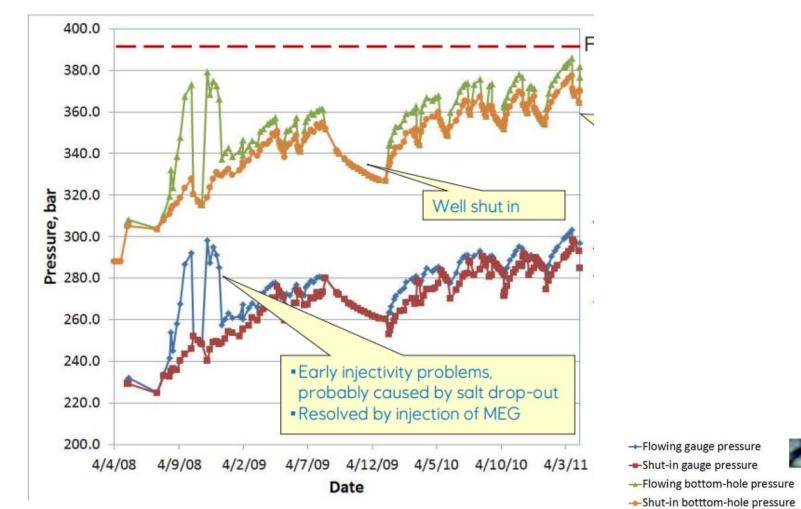
٠


<u>1000 days</u>

Permeability Decline


<u>2000 days</u>

Permeability Decline



5000 days – 40% reduction in permeability

Examples

Snøhvit

Thank you

LinkedIn opc.co.uk max.richards@opc.co.uk

24 Q2 | June 23 SPE – CO₂ Geochemistry