

Hydrogen injectivity and recovery in porous media

Eike Marie Thaysen

PhD Biogeochemistry Researcher in underground gas storage and groundwater quality

eike.thaysen@ed.ac.uk

European Union

Engineering and Physical Sciences Research Council

Scales and deliverability of hydrogen storage

⁴ **Where can we store 20 TWh of H2?**

Interseasonal porous media H² storage– a technology in its infancy shoes

⁶ **Parameters that affect H² injectivity and recovery**

Key parameter: Wettability (contact angle between H₂, brine and rock)

organic acids, oil and biofilm coating affect the wettability and, depending on measurement technique (buoyancy, capillary and gravitational forces acting) salinity, temperature, pressure

- Porosity, permeability, tortuosity, pore network connectivity also important descriptors for H_2 fluid flow *beware microorganisms!*
- Cushion gas

Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature *Clogging of pores and pipes Davies, D. (2003).* Understanding biofilm resistance to antibacterial agents. Nature *Clogging of pore Reviews Drug Discovery (2),* 114–122

Experiments on H² injectivity and recovery at Diamond Light Source, UK

Rock sample inside X-ray transparent pressure vessel

Pumps for injecting H2 and brine and for the confining pressure and backpressure

Residual H² saturation increases with pore fluid pressure

H2 saturation after injection into brine saturated rock Residual H₂ saturation after brine imbibition @Ca= 2.4*10-6 2 MPa 20 8 ± 0.01% 20 10 min 10.66% 20 20 10 min 10.66% 20 20 10.5 % 49.5 % **50 Bar, 20 Ba 5 MPa 7 MPa Total: 21.4 % 51.7** ±**0.66% Total: 10.0** ± **0.02% Total: 11.5** ± **0.64% 1** mm **1 mm 1 mm 1 mm 1 mm @Ca= 1.7*10-8 Percentage of injected: 20 % Percentage of injected: 24% Percentage of injected: 43%**

(all at constant confining pressure of 8 MPa)

Thaysen et al., Pore-scale imaging of hydrogen displacement and trapping in porous media, Int J Hydrogen J, in press, 2022

Rock dependency Experimental condition Methodology

How ¹⁰ **can we avoid reduced injectivity and withdrawal by clogging ?**

Site selection: Growth criteria of major cultivated H² consuming microbes

- Microbial life limits with regards to temperature, pH and salinity for four key hydrogen consuming bacteria:
	- ➢ **Methanogens** (consume hydrogen/produce methane)
	- ➢ **Homoactogens** (consume hydrogen/produce acetone)
	- ➢ **Sulphur species reducing** (consume hydrogen/produce hydrogen sulphide)
- Conditions are unfavourable to bacterial activity:
	- ➢ Above temperatures of 122°C
	- \triangleright Above salinities of 4.4 M NaCl

Thaysen et al., 2022, Estimating microbial growth and hydrogen storage in porous media, Renew Sustain Energ Rev, 151(111481), 1-15

- **No risk**: fields with a temperature >122°C can be considered as sterile, as no H_2 consuming bacteria have been found above this temperature. **9 UKCS gas fields**
- **Low risk**: fields >90 °C are considered paleosterile. **35 UKCS gas fields**
- **Medium risk**: fields >55°C and a salinity > 1.7 mol L^{-1} NaCl, as no cultivated H₂ consuming bacteria can grow in this combination. **22 UKCS gas fields**
- **High risk**: fields $<55^{\circ}$ C and <1.7 mol L^{-1} NaCl because these are conditions optimal for growth. **9 UKCS gas fields**

Thaysen et al., 2023, Microbial risk assessment for underground hydrogen storage in porous rocks, in review.

Microbial risk in depleted gas fields¬-in-use pipelines

Southern North Sea holds many not-inuse pipelines which could be repurposed for H² transport to ´no risk´ or ´low risk´ depleted gas fields

in porous rocks, in review.

Northern and Central North Sea

- H_2 injectivity \sim 4-65% of the pore space and independent of pore fluid pressure
- 30-80 % of the injected H_2 can be recovered making the H_2 storage operation feasible
- H_2 recovery decreases with pore fluid pressure, indicating that shallow reservoirs are more favourable for H_2 storage
- H_2 storage sites should be carefully selected with respect to temperature and salinity as microbial activity can reduce the injectivity and recovery (& consume H_2)

Thank you!

Eike Marie Thaysen eike.thaysen@ed.ac.uk

THE UNIVERSITY of EDINBURGH

No show stoppers… so far

- Perspective paper on enabling large-scale hydrogen storage in porous media the scientific challenges <https://doi.org/10.1039/D0EE03536J>
- Biological site screening: We suggest that storage reservoirs over 122°C or with salinities above 4.4 M NaCl equivalent will be less favourable to microbial growth <https://authors.elsevier.com/c/1dYWP4s9Hw2Eu4>
- \checkmark No significant geochemical reactions have been observed in our reactive experiments <https://pubs.acs.org/doi/full/10.1021/acsenergylett.2c01024>
- \checkmark Column height calculations indicate hydrogen will have a higher column height than methane and that this increases with increasing depth.<https://doi.org/10.1021/acsenergylett.1c00845>
- \checkmark Developed a online tool to provide high accuracy thermodynamic property estimations of hydrogen mixtures (CO2, N2, CH4, natural gas) over a range of temperatures and pressures. <https://www.nature.com/articles/s41597-020-0568-6>
- \checkmark Cushion gas will play an important role in controlling both injectivity and productivity during hydrogen storage.<https://doi.org/10.1016/j.ijhydene.2021.09.174>
- Significant storage capacity in depleted gas fields, minimising subsurface competition with other low carbon geoenergy applications such as CCS or CAES. <https://doi.org/10.1016/j.apenergy.2020.116348> and <https://doi.org/10.1021/acsenergylett.1c00845>