

CO² Storage in a Depleted Gas Reservoir

London SPE Net Zero Programme

June 2022

OPC UK LTD₁ 1-2 Apollo Studios, Charlton Kings Rd, London NW5 2SB₁ +44 (0)207 4281111₁ london@opc.co.uk 1 www.opc.co.uk

Oilfield Production Consultants (OPC)

- Established in 1987
- Global Upstream Technical Services Consultancy
- Experts in Subsurface, Production Engineering and Geosciences
- Clients are NOCs, IOCs and Independents
- Technical Staff, Consultants and Software Technology Resources
- Expert, Independent, and Efficient

Offices

Background Information

Crit. Oil Saturatio 0.48257 0.37443

0.26629

0.15814 0.05000

- Offshore dry gas field, sandstone
- Average net thickness 260 780 ft
- Permeability 0.4 20 mD
- Average porosity 0.08
- Six gas producers
- Seven years of production history
- 2.5 million active cells

CCS Screening Process

Key questions during screening process

Practical capacity evaluated using the simulation model, using rock mechanics consideration

> Reasonable assessment

Not looked at

Very briefly assessed during this study

Reservoir Simulation Study Workflow

- Assessment of the practical storage capacity requires use of a compositional simulation model which can model $CO₂$ properties.
- OPC have converted existing tNav black oil simulation model (E1) to a compositional model (E3) and re-history matched the model.
- The compositional model was used to examine multiple injection scenarios. Prediction runs were typically 4 8hrs duration.
- Geomechanical constraints defined by geomechanical study were included.

Introduction

- CCS is considered as one component of a strategy to reduce $CO₂$ emissions into the atmosphere
- CO₂ injected as a liquid and stored as supercritical fluid

Transport:

 $CO₂$ compressed and transported in liquid (dense) phase. $CO₂$ gas quality would have to be maintained dry with no free water present at nearly all times.

Storage

Super-critical CO $_2^{\cdot}$: weighs like a liquid and flows like a gas.

The $CO₂$ density will still be less than water. The injected $CO₂$ will migrate to the top of the rock layer because of buoyancy forces.

As we are interested in the long term trapping of the $CO₂$ for hundreds to thousands of years, it is imperative that the $CO₂$ cannot escape.

Reservoir Pressure & Temperature

- Initial reservoir pressure 401 bar.
- Depleted reservoir pressure expected 75 132 bar.
- Ambient reservoir temperature 227˚F.
- BHT during CO_2 injection 108°F.

Conversion of E1 Model to E3 Model

Key assumptions and modifications:

- Reference black oil history matched base case model.
- The following modifications were made to the model:
	- Implementation of the E3 PVT file. A 9- components model was initially used; subsequently reduced to 6, for run time (similar results).
	- The field is initialised using the initial water saturation grid of the E1 model, for GIIP consistency.
	- The saturation tables were re-built for compatibility with E3.
- Assumptions:
	- It is assumed that the injected fluid contains 100% CO₂.

10 Q2 | June 22

CO² Injection Assumptions

- \cdot \cdot CO₂ injection start date consistent across all scenarios.
- Injection is controlled by CO_2 injection rate to maintain the constant rate plateau.
- Maximum THP is set by the facilities (limit as reservoir pressure increases).
- Maximum BHP is set by geomechanics (limit as reservoir pressure increases).
- In order to investigate individual well's injectivity and field's suitability to store CO $_{\rm 2}$ / plume development and optimum practical storage capacity black oil simulation model was converted to compositional model and all producing wells were converted into CO $_2$ injectors and the following development concepts were tested:
	- Individual well injectivity at 1Mt/y.
	- Higher injectivity wells tested individually for $2 3$ Mt/y.
	- Combined injection from a number of wells to meet CO $_2$ injection rate of 1 – 5 Mt/y and to maintain the stable injection rate.

CO² Plume Development

- **There are no significant restrictions observed in plume development**
	- Cross-Section through two wells showing the mole fraction of CO $_2$ pre and post CO $_2$ injection.
	- Well schedule and sequence as well as combination of different injection strategies would require optimisation at a later stage.

Reservoir Pressure

- Cross-Section through two wells showing reservoir pressure.
- Reservoir pressure increasing around shut-in wells.

466.93889 335.14375 203.34862

Reservoir Modelling Conclusions

- The field is capable of storing CO $_2$, practical storage capacity identified along with the optimum injection concept.
- Geomechanical studies carried out by a recognised industry expert and using measurements from the existing wells confirms that the cap rock strength is sufficient for the reservoir containment of $CO₂$ at pressure ranges observed in this study.
- Our reservoir modelling work indicates there are no restrictions to plume development and because of this, the reservoir is well suited for the CO $_2$ storage.
- Reservoir pressure at abandonment is predicted to be close to but higher than the critical pressure for $CO₂$ which is beneficial as at normal operating conditions it avoids any phase changes/extreme cooling caused by Joule – Thomson effect.

THANK YOU