

CO₂ Storage in a Depleted Gas Reservoir

London SPE Net Zero Programme

June 2022

OPC UK LTD | 1-2 Apollo Studios, Charlton Kings Rd, London NW5 2SB | +44 (0)207 4281111 | london@opc.co.uk | www.opc.co.uk

Oilfield Production Consultants (OPC)

- Established in 1987
- Global Upstream Technical Services Consultancy
- Experts in Subsurface, Production Engineering and Geosciences
- Clients are NOCs, IOCs and Independents
- Technical Staff, Consultants and Software Technology Resources
- Expert, Independent, and Efficient

Offices

Background Information

Crit. Oil Saturatio.

0.48257

0.26629

0.15814

- Offshore dry gas field, sandstone
- Average net thickness 260 780 ft
- Permeability 0.4 20 mD
- Average porosity 0.08
- Six gas producers
- Seven years of production history
- 2.5 million active cells

CCS Screening Process

Key questions during screening process

Practical capacity evaluated using the simulation model, using rock mechanics consideration

Reasonable

assessment

at

Very briefly

assessed

during this

study

Reservoir Simulation Study Workflow

- Assessment of the practical storage capacity requires use of a compositional simulation model which can model CO₂ properties.
- OPC have converted existing tNav black oil simulation model (E1) to a compositional model (E3) and re-history matched the model.
- The compositional model was used to examine multiple injection scenarios. Prediction runs were typically 4 8hrs duration.
- Geomechanical constraints defined by geomechanical study were included.

Introduction

- CCS is considered as one component of a strategy to reduce CO₂ emissions into the atmosphere
- CO₂ injected as a liquid and stored as supercritical fluid

Transport:

CO₂ compressed and transported in liquid (dense) phase. CO₂ gas quality would have to be maintained dry with no free water present at nearly all times.

Storage

Super-critical CO_2 : weighs like a liquid and flows like a gas.

The CO_2 density will still be less than water. The injected CO_2 will migrate to the top of the rock layer because of buoyancy forces.

As we are interested in the long term trapping of the CO_2 for hundreds to thousands of years, it is imperative that the CO_2 cannot escape.

Reservoir Pressure & Temperature

OPC

- Initial reservoir pressure 401 bar.
- Depleted reservoir pressure expected 75 132 bar.
- Ambient reservoir temperature 227°F.
- BHT during CO_2 injection 108°F.

Conversion of E1 Model to E3 Model

Key assumptions and modifications:

- Reference black oil history matched base case model.
- The following modifications were made to the model:
 - Implementation of the E3 PVT file. A 9- components model was initially used; subsequently reduced to 6, for run time (similar results).
 - The field is initialised using the initial water saturation grid of the E1 model, for GIIP consistency.
 - The saturation tables were re-built for compatibility with E3.
- Assumptions:
 - It is assumed that the injected fluid contains 100% CO₂.

10 Q2 | June 22

CO₂ Injection Assumptions

- CO₂ injection start date consistent across all scenarios.
- Injection is controlled by CO₂ injection rate to maintain the constant rate plateau.
- Maximum THP is set by the facilities (limit as reservoir pressure increases).
- Maximum BHP is set by geomechanics (limit as reservoir pressure increases).
- In order to investigate individual well's injectivity and field's suitability to store CO₂ / plume development and optimum practical storage capacity black oil simulation model was converted to compositional model and all producing wells were converted into CO₂ injectors and the following development concepts were tested:
 - Individual well injectivity at 1Mt/y.
 - Higher injectivity wells tested individually for 2 3 Mt/y.
 - Combined injection from a number of wells to meet CO_2 injection rate of 1 5 Mt/y and to maintain the stable injection rate.

# Wells	Injection Rate, Mt/y
1	1
1	1
1	0.944
1	1
1	1
1	1
2	1
3	1
5	1
1	2
2	2
3	2
5	2
1	3
2	3
3	3
5	3
3	5
5	5

CO₂ Plume Development

- There are no significant restrictions observed in plume development
 - Cross-Section through two wells showing the mole fraction of CO₂ pre and post CO₂ injection.
 - Well schedule and sequence as well as combination of different injection strategies would require optimisation at a later stage.

Reservoir Pressure

- Cross-Section through two wells showing reservoir pressure.
- Reservoir pressure increasing around shut-in wells.

466.93889 335.14375 203.34862

Reservoir Modelling Conclusions

- The field is capable of storing CO₂, practical storage capacity identified along with the optimum injection concept.
- Geomechanical studies carried out by a recognised industry expert and using measurements from the existing wells confirms that the cap rock strength is sufficient for the reservoir containment of CO₂ at pressure ranges observed in this study.
- Our reservoir modelling work indicates there are no restrictions to plume development and because of this, the reservoir is well suited for the CO₂ storage.
- Reservoir pressure at abandonment is predicted to be close to but higher than the critical pressure for CO₂ which is beneficial as at normal operating conditions it avoids any phase changes/extreme cooling caused by Joule – Thomson effect.

THANK YOU